Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Med ; : 107611, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570145

RESUMEN

BACKGROUND: Benralizumab is indicated as add-on therapy in patients with uncontrolled, severe eosinophilic asthma; it has not yet been evaluated in a large Asian population with asthma in a clinical trial. OBJECTIVE: To evaluate the efficacy and safety of benralizumab in patients with severe asthma in Asia. METHODS: MIRACLE (NCT03186209) was a randomized, Phase 3 study in China, South Korea, and the Philippines. Patients aged 12-75 years with severe asthma receiving medium-to-high-dose inhaled corticosteroid/long-acting ß2-agonists, stratified (2:1) by baseline blood eosinophil count (bEOS) (≥300/µL; <300/µL), were randomized (1:1) to benralizumab 30 mg or placebo. Endpoints included annual asthma exacerbation rate (AAER; primary endpoint), change from baseline at Week 48 in pre-bronchodilator (BD) forced expiratory volume in 1 second (pre-BD FEV1) and total asthma symptom score (TASS). Safety was evaluated ≤ Week 56. RESULTS: Of 695 patients randomized, 473 had baseline bEOS ≥300/µL (benralizumab n = 236; placebo n = 237). In this population, benralizumab significantly reduced AAER by 74% (rate ratio 0.26 [95% CI 0.19, 0.36], p < 0.0001) and significantly improved pre-BD FEV1 (least squares difference [LSD] 0.25 L [95% CI 0.17, 0.34], p < 0.0001) and TASS (LSD -0.25 [-0.45, -0.05], p = 0.0126) versus placebo. In patients with baseline bEOS <300/µL, there were numerical improvements in AAER, pre-BD FEV1, and TASS with benralizumab versus placebo. The frequency of adverse events was similar for benralizumab (76%) and placebo (80%) in the overall population. CONCLUSIONS: MIRACLE data reinforces the efficacy and safety of benralizumab for severe eosinophilic asthma in an Asian population, consistent with the global Phase 3 results.

2.
Ann Am Thorac Soc ; 21(2): 261-270, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962905

RESUMEN

Rationale: Bronchiectasis is a chronic, progressive disease of bronchial dilation, inflammation, and scarring leading to impaired mucociliary clearance and increased susceptibility to infection. Identified causes include previous severe respiratory infections. A small, single-center UK study demonstrated a reduction in bronchiectasis exacerbations during the first year of the coronavirus disease (COVID-19) pandemic. No studies have been conducted in a U.S. (commercially insured) cohort to date. Objectives: To explore the impact of the COVID-19 pandemic on the frequency of exacerbations in a large cohort of commercially insured U.S. patients with bronchiectasis by testing the hypothesis that U.S. patients with bronchiectasis had fewer exacerbations during the pandemic. Methods: This retrospective observational cohort study used health insurance claims data from Optum's deidentified Clinformatics Data Mart database, which included U.S. patients and their covered dependents. Eligible patients were ⩾18 years of age with bronchiectasis; patients with other respiratory conditions were excluded. The main study cohort excluded patients with frequent asthma and/or chronic obstructive pulmonary disease diagnoses. The primary objective was to compare the bronchiectasis exacerbation rates before and during the COVID-19 pandemic. Results: The median number of exacerbations per patient per year decreased significantly from the year before the COVID-19 pandemic to the first year of the pandemic (1 vs. 0; P < 0.01). More patients had zero exacerbations during the first year of the pandemic than the year prior (57% vs. 24%; McNemar's chi-square = 122.56; P < 0.01). Conclusions: In a U.S. population-based study of patients with International Classification of Diseases codes for bronchiectasis, the rate of exacerbations during Year 1 of the COVID-19 pandemic was reduced compared with the 2-year time period preceding the pandemic.


Asunto(s)
Bronquiectasia , COVID-19 , Seguro , Humanos , Estudios Retrospectivos , Pandemias , COVID-19/epidemiología , Bronquiectasia/epidemiología , Progresión de la Enfermedad
3.
J Med Chem ; 66(20): 14188-14207, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37797307

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.


Asunto(s)
Neoplasias , Oxadiazoles , Ratas , Ratones , Animales , Histona Desacetilasa 6 , Oxadiazoles/farmacología , Tubulina (Proteína)/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química
4.
Skin Health Dis ; 3(3): e209, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37275428

RESUMEN

Background: Janus Kinase (JAK) inhibition has recently demonstrated therapeutic efficacy in both restoring hair growth and resolving inflammation in Alopecia Areata (AA). These effects are dose dependent and mainly efficacious at ranges close to a questionable risk profile. Objectives: We explored the possibility to separate the beneficial and adverse effects of JAK inhibition by selectively inhibiting JAK1 and thereby avoiding side effects associated with JAK2 blockade. Methods: The C3H/HeJ mouse model of AA was used to demonstrate therapeutic efficacy in vivo with different regimens of a selection of JAK inhibitors in regards to systemic versus local drug exposure. Human peripheral blood lymphocytes were stimulated in vitro to demonstrate translation to the human situation. Results: We demonstrate that selective inhibition of JAK1 produces fast resolution of inflammation and complete restoration of hair growth in the C3H/HeJ mouse model of AA. Furthermore, we show that topical treatment does not restore hair growth and that treatment needs to be extended well beyond that of restored hair growth in order to reach treatment-free remission. For translatability to human disease, we show that cytokines involved in AA pathogenesis are similarly inhibited by selective JAK1 and pan-JAK inhibition in stimulated human peripheral lymphocytes and specifically in CD8+ T cells. Conclusion: This study demonstrates that systemic exposure is required for efficacy in AA and we propose that a selective JAK1 inhibitor will offer a treatment option with a superior safety profile to pan-JAK inhibitors for these patients.

5.
PLoS One ; 17(10): e0266310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36223404

RESUMEN

Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-ß, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.


Asunto(s)
Inhibidores de Histona Desacetilasas , Enfermedad Pulmonar Obstructiva Crónica , Citocinas/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Inflamación/metabolismo , Pulmón/metabolismo , Mucinas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098422

RESUMEN

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Asunto(s)
Fibrosis Quística , Canales Epiteliales de Sodio , Humanos , Ratas , Ovinos , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Amilorida/farmacología , Depuración Mucociliar/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Mucosa Respiratoria
7.
Elife ; 112022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587260

RESUMEN

Chronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor (TCR) signaling. As with all protein tyrosine phosphatases, the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T-cell-dependent inflammatory response and development of T-cell-dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the noncatalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T-cell-dependent autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T , Animales , Disulfuros/metabolismo , Inflamación/metabolismo , Ratones , Oxidación-Reducción , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
8.
J Cyst Fibros ; 21(4): 684-690, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35227647

RESUMEN

BACKGROUND: Epithelial sodium channel (ENaC) inhibitors may offer clinical benefit in cystic fibrosis (CF); however, data are limited. We report the outcomes of a Phase I (NCT02679729) and a Phase Ib (NCT02950805) study of AZD5634, a novel inhaled ENaC inhibitor. METHODS: A Phase I, first-in-human, single-blind, placebo-controlled, single ascending dose, sequential dose group study assessed the safety, tolerability, and pharmacokinetics of AZD5634 in healthy subjects (n=53) in part A following inhaled doses up to 1700 µg, and, in part B, following administration of single inhaled (1700 µg) and intravenous (65 µg) doses. A Phase Ib, randomized, double-blind, placebo-controlled, single-dose, 2-way cross-over study assessed the effects of a single dose (600 µg) of inhaled AZD5634 on mucociliary clearance (MCC), pharmacokinetics and safety and tolerability in patients with CF (n=11). Nasal potential difference (NPD) was assessed as an in situ target engagement exploratory biomarker. RESULTS: Absolute bioavailability of AZD5634 after inhalation was approximately 3%, indicating minimal distribution into the systemic circulation. Urinary excretion was a minor elimination pathway. Administration of inhaled AZD5634 did not improve MCC in CF patients, but AZD5634 inhibited ENaC in the nasal epithelium, as measured by NPD. AZD5634 was safe and well tolerated in both studies. CONCLUSIONS: AZD5634 showed favorable pharmacokinetics and safety in healthy subjects and patients with CF. However, despite achieving target engagement, proof of mechanism was not achieved after a single dose in patients with CF. Further evaluation into multiple dose studies is warranted to explore its therapeutic potential.


Asunto(s)
Fibrosis Quística , Administración por Inhalación , Estudios Cruzados , Fibrosis Quística/diagnóstico , Fibrosis Quística/tratamiento farmacológico , Método Doble Ciego , Voluntarios Sanos , Humanos , Método Simple Ciego
9.
PLoS One ; 16(7): e0254248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242292

RESUMEN

We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50µM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.


Asunto(s)
Técnicas Biosensibles , Glucosa , Animales , Proteínas de Unión al Calcio , Células Epiteliales , Ratones , Proteínas de Transporte de Monosacáridos , Proteínas de Unión Periplasmáticas
10.
Eur J Pharmacol ; 904: 174123, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33974881

RESUMEN

Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Bicarbonatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/efectos de los fármacos , Femenino , Concentración de Iones de Hidrógeno/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/metabolismo , Pulmón/efectos de los fármacos , Masculino , Ratones , Moco/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/genética , Porcinos
12.
PLoS One ; 14(7): e0210308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31277078

RESUMEN

Alopecia areata (AA) is a hair loss disorder resulting from an autoimmune reaction against hair follicles. T-helper 1 cells are a major contributor to this disorder, but little is known about the role of T-regulatory cells (Tregs) in AA. Here, we analysed the distribution of circulating Treg subsets in twenty AA patients with active hair loss and fifteen healthy subjects by flow cytometry. The Treg suppressor HLA-DR+ subpopulation was significantly reduced in the patients (P<0.001) and there were significantly fewer cells expressing CD39 among the CD4+CD25+Foxp3+ Treg subpopulation in patients (P = 0.001). FOXP3 CD39 Treg cells were also reduced in hair follicles; by 75% in non-lesional skin and 90% in lesional skin, when compared to control healthy skin. To further characterise Treg cells in AA; Tregs (CD4+CD25+FOXP3+) were investigated for their TCRß sequence. PCR products analysed by Next Generation Sequencing techniques, showed that all frequent public clonotypes in AA Tregs were also present in controls at relatively similar frequencies, excepting two public clonotypes: CATSRDEGGLDEKLFF (V15 D1 J1-4) and CASRDGTGPSNYGYTF (V2 D1 J1-2), which were exclusively present in controls. This suggests that these Treg clonotypes may have a protective effect and that they may be an exciting subject for future therapeutic applications.


Asunto(s)
Alopecia Areata/inmunología , Antígenos CD/metabolismo , Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/metabolismo , Adulto , Alopecia Areata/metabolismo , Femenino , Humanos , Masculino
13.
JCI Insight ; 3(17)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185674

RESUMEN

The respiratory tract is normally kept essentially free of bacteria by cilia-mediated mucus transport, but in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), bacteria and mucus accumulates instead. To address the mechanisms behind the mucus accumulation, the proteome of bronchoalveolar lavages from COPD patients and mucus collected in an elastase-induced mouse model of COPD was analyzed, revealing similarities with each other and with the protein content in colonic mucus. Moreover, stratified laminated sheets of mucus were observed in airways from patients with CF and COPD and in elastase-exposed mice. On the other hand, the mucus accumulation in the elastase model was reduced in Muc5b-KO mice. While mucus plugs were removed from airways by washing with hypertonic saline in the elastase model, mucus remained adherent to epithelial cells. Bacteria were trapped on this mucus, whereas, in non-elastase-treated mice, bacteria were found on the epithelial cells. We propose that the adherence of mucus to epithelial cells observed in CF, COPD, and the elastase-induced mouse model of COPD separates bacteria from the surface cells and, thus, protects the respiratory epithelium.


Asunto(s)
Bacterias , Células Epiteliales/metabolismo , Moco/microbiología , Moco/fisiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Animales , Líquido del Lavado Bronquioalveolar , Fibrosis Quística/complicaciones , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Células Epiteliales/patología , Femenino , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina 5B/genética , Elastasa Pancreática , Pseudomonas aeruginosa , Mucosa Respiratoria
14.
Expert Opin Ther Targets ; 22(6): 503-511, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29808708

RESUMEN

INTRODUCTION: This review aims to raise the potential of the modern society's impact on gut integrity often leading to increased intestinal permeability, as a cause or driver of Alopecia Areata (AA) in genetically susceptible people. With the increasing rate of T cell-driven autoimmunity, we hypothesize that there is a common root cause of these diseases that originates from chronic inflammation, and that the gut is the most commonly exposed area with our modern lifestyle. Areas covered: We will discuss the complexity in the induction of AA and its potential link to increased intestinal permeability. Our main focus will be on the gut microbiome and mechanisms involved in the interplay with the immune system that may lead to local and/or peripheral inflammation and finally, tissue destruction. Expert opinion: We have seen a link between AA and a dysfunctional gastrointestinal system which raised the hypothesis that an underlying intestinal inflammation drives the priming and dysregulation of immune cells that lead to hair follicle destruction. While it is still important to resolve local inflammation and restore the IP around the hair follicles, we believe that the root cause needs to be eradicated by long-term interventions to extinguish the fire driving the disease.


Asunto(s)
Alopecia Areata/inmunología , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Alopecia Areata/terapia , Animales , Autoinmunidad/inmunología , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/inmunología , Folículo Piloso/inmunología , Folículo Piloso/patología , Humanos , Inflamación/complicaciones , Estilo de Vida , Linfocitos T/inmunología
15.
Pharmacol Ther ; 179: 102-110, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28546083

RESUMEN

This review aims to address the mechanisms of compromised immune tolerance contributing to the development and maintenance of Alopecia Areata (AA). Our goal is to also highlight future treatment opportunities and therapeutics that will safely and efficiently restore hair growth and maintain patients in remission. AA is a presumptive autoimmune disorder that coincides and genetically clusters to several other autoimmune diseases. In this review, we pay attention to the learnings from the mechanistic research and drug development in these other autoimmune conditions. Interestingly, most of these diseases have been linked to compromised central and peripheral tolerance, and increased intestinal inflammation with enhanced gut permeability. Break of tolerance and priming of the autoreactive T-cells to attack antigenic epitopes in the hair follicle most likely requires several steps which include escape from negative selection and compromised peripheral tolerance. Local skin-related changes are also of importance due to the patchy manifestation of the skin areas with loss of hair, particularly in the early disease. Here, we discuss the defective mechanisms of tolerance, both central and peripheral, and hypothesize that the disease is driven by areas of tolerance break, and that these could be targeted for successful therapeutic interventions.


Asunto(s)
Alopecia Areata/inmunología , Tolerancia Inmunológica , Alopecia Areata/microbiología , Animales , Autoinmunidad , Microbioma Gastrointestinal/inmunología , Helmintiasis/inmunología , Humanos
16.
Br J Pharmacol ; 174(9): 836-847, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28192604

RESUMEN

BACKGROUND AND PURPOSE: Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice. EXPERIMENTAL APPROACH: The effect of dapagliflozin on blood and airway glucose concentration, the inflammatory response and infection were investigated in C57BL/6J (wild type, WT) or leptin receptor-deficient (db/db) mice, treated orally with dapagliflozin prior to intranasal dosing with LPS or inoculation with P. aeruginosa. Pulmonary glucose transport and fluid absorption were investigated in Wistar rats using the perfused fluid-filled lung technique. KEY RESULTS: Fasting blood, airway glucose and lactate concentrations were elevated in the db/db mouse lung. LPS challenge increased inflammatory cells in bronchoalveolar lavage fluid from WT and db/db mice with and without dapagliflozin treatment. P. aeruginosa colony-forming units (CFU) were increased in db/db lungs. Pretreatment with dapagliflozin reduced blood and bronchoalveolar lavage glucose concentrations and P. aeruginosa CFU in db/db mice towards those seen in WT. Dapagliflozin had no adverse effects on the inflammatory response in the mouse or pulmonary glucose transport or fluid absorption in the rat lung. CONCLUSION AND IMPLICATIONS: Pharmacological lowering of blood glucose with dapagliflozin effectively reduced P. aeruginosa infection in the lungs of diabetic mice and had no adverse pulmonary effects in the rat. Dapagliflozin has potential to reduce the use, or augment the effect, of antimicrobials in the prevention or treatment of pulmonary infection.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucósidos/uso terapéutico , Infecciones por Pseudomonas/sangre , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Compuestos de Bencidrilo/farmacología , Glucemia/metabolismo , Líquido del Lavado Bronquioalveolar , Diabetes Mellitus Experimental/sangre , Glucósidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Wistar , Proteínas de Transporte de Sodio-Glucosa/farmacología , Proteínas de Transporte de Sodio-Glucosa/uso terapéutico
17.
J Pulm Respir Med ; 2017(1)2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29938126

RESUMEN

Elevation of blood glucose results in increased glucose in the fluid that lines the surface of the airways and this is associated with an increased susceptibility to infection with respiratory pathogens. Infection induces an inflammatory response in the lung, but how this is altered by hyperglycemia and how this affects glucose, lactate and cytokine concentrations in the airway surface liquid is not understood. We used Wild Type (WT) and glucokinase heterozygote (GK+/-) mice to investigate the effect of hyperglycemia, with and without LPS-induced inflammatory responses, on airway glucose, lactate, inflammatory cells and cytokines measured in Bronchoalveolar Lavage Fluid (BALF). We found that glucose and lactate concentrations in BALF were elevated in GK+/- compared to WT mice and that there was a direct correlation between blood glucose and BALF glucose concentrations. LPS challenge increased BALF inflammatory cell numbers and this correlated with decreased glucose and increased lactate concentrations although the effect was less in GK+/- compared to WT mice. All cytokines measured (except IL-2) increased in BALF with LPS challenge. However, concentrations of TNFα, INFγ, IL-1ß and IL-2 were less in GK+/- compared to WT mice. This study shows that the normal glucose/lactate environment of the airway surface liquid is altered by hyperglycemia and the inflammatory response. These data indicate that inflammatory cells utilize BALF glucose and that production of lactate and cytokines is compromised in hyperglycemic GK+/- mice.

18.
Expert Opin Ther Pat ; 27(2): 145-161, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27774822

RESUMEN

INTRODUCTION: Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 2 covering J through Z. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.


Asunto(s)
Diseño de Fármacos , Quinasas Janus/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Asma/tratamiento farmacológico , Asma/enzimología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/enzimología , Relación Dosis-Respuesta a Droga , Humanos , Patentes como Asunto , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos
19.
Expert Opin Ther Pat ; 27(2): 127-143, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27774824

RESUMEN

INTRODUCTION: Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013-2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant's name, with part 1 covering A through to I. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.


Asunto(s)
Diseño de Fármacos , Quinasas Janus/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Patentes como Asunto , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos
20.
Bioorg Med Chem Lett ; 26(8): 2023-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26965854

RESUMEN

A series of isoindolinone compounds have been developed showing good in vitro potency on the Kv1.5 ion channel. By modification of two side chains on the isoindolinone scaffold, metabolically stable compounds with good in vivo PK profile could be obtained leaving the core structure unsubstituted. In this way, low microsomal intrinsic clearance (CLint) could be achieved despite a relatively high logD. The compounds were synthesized using the Ugi reaction, in some cases followed by Suzuki and Diels-Alder reactions, giving a diverse set of compounds in a small number of reaction steps.


Asunto(s)
Isoindoles/farmacología , Canal de Potasio Kv1.5/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Isoindoles/síntesis química , Isoindoles/química , Ratones , Modelos Animales , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...